Skip to main content

Fuse Integration Service - Auto Dealership Management Demo, Part Three

This series of blog is based on building an auto dealership management system on Fuse Integration Service. We will be creating three major functions in the system.
  • Sales report tracking 
  • Vehicle inventory status
  • Customer IoT Service
We will be exporting a sales report to a web page, provide current inventory status of available cars through web service. And collect customer data from IoT devices on their car then alert close by shops. It would be better if you have some basic knowledge of Apache Camel before you begin, because I will not explain it in a great detail, I'll put my focus on how it works with the base platform, OpenShift. For Camel basic, you can check out my previous JBoss Fuse workshop. 

Part three of this series is the Customer IoT Service, here we have an application that will act as multiple cars constantly and random sending GPS location signal through restful endpoint and here we take the signal and see how close is this location to the dealer store. Step one is when we get the signal, we want to store it and pass it along to a medium and process the input data more efficiently. 
There are two endpoint for this service, web service and messaging broker. Webservice we have done it several times now, simple expose the port in the docker by setting the http port in docker maven plugin, 

<env>
 <JAVA_LIB_DIR>/deployments/lib</JAVA_LIB_DIR>
 <JAVA_MAIN_CLASS>org.apache.camel.spring.Main</JAVA_MAIN_CLASS>
 <HTTP_PORT>${http.port}</HTTP_PORT>
</env>
<ports>
  <port>${http.port}</port>
</ports>

and configure the service in pom.xml for fabric8 plugin to pick up. 

  <fabric8.service.name>${servicename}</fabric8.service.name>
 <fabric8.service.port>${serviceport}</fabric8.service.port>
 <fabric8.service.containerPort>${http.port}</fabric8.service.containerPort>

Normally, to setup broker, we need to specify the IP and port of the broker, this will cause problems on cloud. The characteristic of cloud is it's flexibility and freedom of adding and removing resource according to need, therefore it's not possible to pre-configure the broker that maybe available or could suddenly removed by upcoming incidents. That's why by take advantage of using the existing broker service we have already setup on Openshift, and using the fabric8 amq component, it will hide the complexity of the network setting, and auto discover where the broker is for you. If you take a look at the service list in OpenShift service console, 

Here, you can see the amq default protocol. We will be using this one, set the service name in the system environment variable inside pom.xml 
  • <fabric8.env.A_MQ_SERVICE_NAME>BROKER_AMQ_TCP</fabric8.env.A_MQ_SERVICE_NAME>

In our Camel Context, we want to configure the "io.fabric8.mq.core.MQConnectionFactory" and provide our ID and PWD. 

<bean id="amqConnectionFactory" class="io.fabric8.mq.core.MQConnectionFactory">
  <property name="userName" value="yyyy"/>
  <property name="password" value="xxxx"/>
</bean>

After these configuration, we can start build our Camel route. What we do it simply place the incoming parameter into a messaging queue called "TESTQUEUE", and return a Done constant text to client sending the location. 

 <restConfiguration component="jetty" port="9191" />
  <rest path="/AutoDMS">
    <get uri="/cargps/{custName}/{geoloc}">
      <to uri="direct:customerTracking"/>
    </get>
  </rest>
  <route id="customerTracking">
    <from uri="direct:customerTracking"/>
    <setBody>
      <simple>
       {"custName":"${headers.custName}","geoloc":"${headers.geoloc}"}
      </simple>
    </setBody>
    <to pattern="InOnly" uri="amq:queue:TESTQUEUE"/>
    <setBody>
      <simple>Done</simple>
    </setBody>
  </route>

Deploy the application as in part one and two by this command.
  • mvn -Pf8-local-deploy

In the console, you can find the gpsservice is up and running, 


Test the application by running the restful endpoint, 
  • http://gpsservice-demo.cdk.10.1.2.2.xip.io/AutoDMS/cargps/123/456

In the application console, we see the route is active, 


and in the broker console, we can see the message in broker.


That's all for part three. See you in part four!


Comments

How can we connect to the AMQ which is running inside openshift v3 from external applications. For example I have a camel route from("amq:testQ").log({$body}).end();

How can some external application say like plain java or .net program connect to the AMQ and send some msg to the amq:testQ

Popular posts from this blog

JBoss EAP 6 - 效能調校 (一) DataSource 的 Connection Pool

效能沒有什麼Best Practice, 反正能調整的就那些。 通常,一個程式的效能大概有70-80% 都跟程式怎麼寫的其實比較有關係。

最近我最疼愛的小貓Puji 因為膀胱結石開刀的時候過世了,心情很差請原諒我的口氣沒有很好,也沒有心情寫部落格。

Puji R.I.P.

=======================正文=======================

這個題目很多人叫我寫,可是這題目好大,這分明就是整死我咩~
所以我會分幾段慢慢寫。

JBoss 的 SubsystemDatasource WebWeb Service EJB Hibernate JMSJCAJVM 調校OS (作業系統)

先來看一下 DataSource Subsystem, DataSource 的部分主要是針對Connection Pool 做調校。

通常,程式都會需要跟資料庫界接,電腦在本機,尤其是在記憶體的運算很快,但是一旦要外部的資源連接,就是會非常的耗資源。所以現在的應用程式伺服器都會有個Pool 放一些先連接好的 資料庫connection,當程式有需要的時候就可以馬上提供,而不用花那些多餘的資源去連接資料庫。

這就是為什麼要針對Connection Pool 去做調校。

以下會討論到的參數,都是跟效能比較有關係,Datasource 還有很多參數,像是檢核connection 是否正確的,我都不會提到。如果你追求的是非常快速的效能,那我建議你一個檢核都不要加。當然,這樣就會為伺服器上面執行的程式帶來風險。這就是你要在效能與正確,安全性上面的取捨了。 (套句我朋友說的話,不可能又要馬兒好,又要馬兒不吃草的..)

最重要的調校參數就是 Connection 的 Pool 數量。(也就是那個Pool 裡面要放幾條的connection.) 這個參數是每一個應用程式都不一樣的。

min-pool-size 

Connection Pool 最少會存留的connection 數量

max-pool-size 

Connection Pool 最多可以開啓的 connection 數量

prefill

事先將connection pool 裡面建立好min-pool-size 的connection.

我的建議是觀察一下平常程式要用到的量設定為 min-pool-size 。
加上…

Red Hat JBoss Fuse/A-MQ - Fuse and A-MQ Version 6.3 GA is released!

Fuse and A-MQ 6.3 GA has just went out. Maybe, you would think this is just only a minor version release why should I care? Hold your thoughts on that! Because they have done a lot of improvements and also added many new features into this release.

Besides various bug fixes and making sure Fuse Fabric is much more stable. There are two major change in this version update:

New Tooling in JBoss Developer Studio (JBDS) 9.1 GA. Newer Apache Camel version – Camel v2.17. I was really impressed by the work put in to make developing Camel application much simpler. First is the installation of tooling itself. Now it has a all-in-one installer so you don't need to worry about which plugins you need to check. See the videos below to see the new "Getting Started" of Fuse 6.3.



And If you notice from the above video, the presentation of camel route in JBDS has also updated. It fixed some of the miss representation of logic and making it easier to read.

Old Camel Route
New Camel Route
On …

Red Hat JBoss Fuse - Getting Started with Fuse Integration Service 2.0 Tech preview

I just realized that I did not do a getting started for Fuse Integration Service 2.0 Tech preview before I did the pipeline demo, thanks for those of you who reminded me! :)

To get started with FIS 2.0, for people who has just getting to know the technology, here is how I interpret it. Basically, it's divide into two aspect,

1. Integration development, FIS uses Apache Camel as the core technology that creates, orchestrate, compose microservices into a super lightweight thin integration layer, and become the API provider and service orchestrator through exposing RESTful or messaging service endpoints. And you can choose to either package and run it with Spring-Boot or Karaf.


2. Application Deployment and Management, FIS takes advantages of OpenShift platform, and allows you to separately deploy the micro-integration service among distributed environment, at the same time takes care of the failover, high availability, load balancing and service lookup problem for you.


So, now we know …